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Modal coupling in the dynamics of a cantilever beam attached to a rotating body
is investigated using a coupled, non-linear three-degree-of-freedom model which
includes the effects of centrifugal stiffening. The near-resonant response of two lateral
modes (one in-plane and one out-of-plane as defined by the plane of rotation) driven by
a periodic out-of-plane excitation is examined for the case in which the natural frequencies
of the lateral modes are commensurate in a near one-to-one ratio. The existence
and stability of periodic solutions are examined using a second order perturbation
analysis. Regions in the system parameter space are identified where single- or multi-mode
responses may occur. Typical responses involve Hopf, saddle node and pitchfork
bifurcations.
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1. INTRODUCTION

The accurate dynamic simulation of rotating, flexible bodies such as rotor blades, robotic
arms and satellite appendages requires models that correctly capture the effects of
angular rotation. Extensive study in this area has resulted in a variety of non-linear
continuum models; see, for example, references [1]–[8]. Correct formulations account for
the angular rotation by including the centrifugal stiffening effect. In these models,
equations governing motion in the axial and lateral directions are coupled through
non-linear displacement terms. Models discretized using appropriate shape functions are
likewise coupled.

Geometrically non-linear models of systems such as beams [9, 10], cables [11] and strings
[12] have similar coupling terms. These systems have been shown to exhibit internally
resonant responses in which modes of vibration that have (near) commensurate natural
frequencies strongly couple. In stationary beams, a particular class of modal interactions
can be excited because the natural frequencies of lateral modes are equal [9]. As will be
shown in the case of a beam attached to a rotating body, this same class of internally
resonant responses can also be excited for beams with particular cross-sections due to the
centrifugal stiffening effect.
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In this study, the forced response of a cantilever beam attached to a rigid body rotating
with constant angular velocity is examined using a three-degree-of-freedom model that
represents axial, lateral in-plane and lateral out-of-plane motion. The model, which
contains both quadratic and cubic non-linearities, includes the effects of centrifugal
stiffening and gyroscopic coupling. Beam cross-section configurations as functions of
rotation speed are determined for which the natural frequencies of the in-plane and
out-of-plane (as defined by the plane of rotation of the beam) modes appear in a (near)
1 : 1 ratio. Typical near-resonant responses in the two lateral directions driven by an
applied periodic, out-of-plane excitation are presented for these configurations. A second-
order perturbation analysis is used to determine the existence and stability of weakly
non-linear periodic motion. Loci of system parameters at which 1:1 internally resonant
responses bifurcate from single-degree-of-freedom responses are determined from the state
equations that govern stability.

2. CONTINUUM MODEL

Illustrated in Figure 1 is a flexible cantilever beam attached to a rigid body of radius
R which rotates with a constant angular speed, v, about a body axis that is fixed in inertial
space. The beam is uniform, with length L, cross-sectional area A (= a× b), density r,
mass per unit length m and Young’s modulus E. For reference, the point O is located on
the elastic axis of the beam at the intersection of the beam and the rigid body. The
deflection of an arbitrary point P, which lies in a generic cross-section in the undeformed
state, is given by rOP =(x+U)a1 + (y+ v)a2 + (z+w)a3, where the unit vector triad
(a1, a2, a3) is fixed with respect to the rigid body. The displacement co-ordinates (U, v, w)
and distances (x, y, z) are respectively aligned with (a1, a2, a3). From Navier’s hypothesis
for beams, the total axial displacement U(x, t) can be expressed as a sum of the
axial stretching and the in-plane displacements due to bending as U(x, t)=
−yv,x (x, t)− zw,x (x, t)+ u(x, t). Here, u(x, t) is the stretching displacement in the
x-direction of point P, t is time and (),x 0 d()/dx.

The kinetic energy, KE, of the deformed configuration is

KE= 1
2 g

L

0

{m(u̇2 + v̇2 + ẇ2)+mv2v2 −2mvu̇v+2mvxv̇+2mv̇uv+mv2x2

+ rIz v2 +mv2u2 +2mv2xu+mv2R2 +2mvRv̇+2mv2Rx+2mv2Ru} dx, (1)

Figure 1. The flexible beam is affixed to a rigid, central hub of radius R. The beam has uniform properties
including the Young’s modulus E and mass per unit length m.
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where the following assumptions are applied: the center of gravity remains on the
centroidal axis; the cross-sectional area is symmetric, the axes of the beam are the principal
axes; rotary inertia and shear effects are negligible; and torsional motion is not considered.

The potential energy, PE is formulated using Euler–Bernoulli beam theory and a
non-linear strain–displacement relationship. Furthermore, the beam is a one-dimensional,
elastic continuum obeying a linear stress–strain relationship. Using the von Kármán strain
measure, exx =(u,x + 1

2 v2
,x + 1

2 w2
,x ), the potential energy is

PE= 1
2 g

L

0

E(Iz v2
,xx + Iy w2

,xx ) dx+ 1
2 g

L

0

EA(u,x + 1
2 v2

,x + 1
2 w2

,x )2 dx, (2)

where Iy and Iz are the area moments of inertia about the a2- and a3-axes, respectively. Note
that the term 1

2 u2
,x in the axial strain is considered to be small in comparison to u,x .

Application of Hamilton’s Principle leads to the coupled, three-dimensional, non-linear
equations of free motion:

−mü+2mvv̇+mv2u+mv2(x+R)+EA[u,x + 1
2 v2

,x + 1
2 w2

,x ],x =0, (3)

−mv̈−2mvu̇+mv2v−EIz v,xxxx +EA[(u,x + 1
2 v2

,x + 1
2 w2

,x )v,x ],x =0, (4)

−mẅ −EIy w,xxxx +EA[(u,x + 1
2 v2

,x + 1
2 w2

,x )w,x ],x =0. (5)

Note that the equations of motion allow for axial/bending coupling and that motions in the
u and v directions are coupled gyroscopically. The accompanying boundary conditions are

u(0, t)= v(0, t)=w(0, t)=0, v,x (0, t)=w,x (0, t)=0,

u,x (L)+ 1
2 v2

,x (L)+ 1
2 w2

,x (L)=0,

Iy w,xx (L)+ Iz v,xx (L)=0, Iy w,xxx (L)+ Iz v,xxx (L)=0. (16)

3. DISCRETE MODEL

Modal interactions between motions in the transverse directions are investigated using
a three-degree-of-freedom model. The equations of motion of the continuum model are
discretized using the separable solutions

u(x, t)= Yi (x)a(t), v(x, t)=Ci (x)b(t), w(x, t)=Fi (x)g(t), (7)

where the spatial functions, Yi (x), Ci (x) and Fi (x) are the ith eigenfunctions
corresponding to vibrations in the axial, and two lateral directions, respectively, for an
Euler–Bernoulli beam with fixed–free boundary conditions rotating at a constant speed.
These eigenfunctions can be calculated numerically from properly linearized equations of
motion corresponding to equations (3)–(5). For low speeds, the eigenfunctions
corresponding to a non-rotating Euler–Bernoulli beam with fixed–free boundary
conditions may be satisfactory.

Taking i=1, substitution of equations (7) into equations (3)–(5) and application of
Galerkin’s method leads to the three-degree-of-freedom, discrete model

ä+2za va ȧ+A1 b� +v2
a a+A3 +A4 b2 +A5 g2 =0, (8)

b� +2zb vb b� +B1 ȧ+v2
b b+B3 ab+B4 g2b+B5 b3 =0, (9)

g̈+2zc vc ġ+v2
c g+C2 ag+C3 b2g+C4 g3 =F cos (Vt/v), (10)
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where modal damping terms have been introduced. In addition, a forced, periodic
excitation of amplitude, F, and frequency, V, has been applied in the out-of-plane
direction. F represents the spatial variation of the applied force as projected on to F1. The
(constant) coefficients in the above equations are calculated in the standard manner.

An important observation is that vb is not the natural frequency of the beam since it
only captures the contributions from the terms mvv−EIz v,xxxx . The ‘‘full rotating
frequency’’, later called kb , will also have a contribution from the −mv2(x+R) term in
the u equation.

4. PERTURBATION ANALYSIS: PERIODIC SOLUTIONS

Periodic solutions to equations (8)–(10) are found for the weakly non-linear response
near primary resonance of the out-of-plane (lateral) mode. Solutions are determined up
to second non-linear order using a multiple scales perturbation method following
references [11] and [16].

To begin, four independent time scales are defined in terms of a small (positive)
parameter, e, as follows:

Tn = en(V/v)t, n=0, 1, 2, 3, (11)

where T0 is a quasi-static time scale, T1 is a ‘‘fast’’ or linear time scale, and T2 and T3 are
‘‘slow’’ time scales that capture the effects of the non-linearities, damping, gyroscopic
coupling and external excitation. Derivative operators on the original time scale, t, may
be expressed in terms of the new time scales using the chain rule as

d
dt

=(V/v) [D0 + eD1 + e2D2 + · · · ],

d2

dt2 = (V/v)2[D2
0 +2eD0 D1 + e2D2

1 +2e2D0 D2 + · · · ]. (12)

The modal displacement amplitudes are expanded, to second nonlinear order O(e3), as a
uniform expansion in the new time scales,

a= a0 + s
3

n=1

enan (T1, T2, T3),

b= s
3

n=1

enbn (T1, T2, T3), g= s
3

n=1

engn (T1, T2, T3). (13)

The constant term a0 has been added to the axial displacement term, a, in order to account
for the quasi-static stretching of the beam as it rotates. This stiffening effect appears in
the equations of motion as −mv2(x+R) which is constant for a fixed rotation speed v.
Note that a0 is a static term of O(1) and is consequently an order of magnitude larger than
the axial motion on the O(e1) time scale.

In addition, the excitation amplitude and the damping coefficients are ordered so that
they appear at the first non-linear order:

F= e2F1 + e3F2, (14)

2za va (V/v)= ema1 + e2ma2, 2zb vb (V/v)= emb1 + e2mb2,

2zc vc (V/v)= emc1 + e2mc2. (15)
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Likewise, the gyroscopic terms are ordered as

A1 (V/v)= ena1 + e2na2, B1 (V/v)= enb1 + e2nb2. (16)

For the case in which the natural frequencies of the (lateral) in-plane mode and the
out-of-plane mode are nearly equal, their relationship can be expressed as

kb = kc + es2, (17)

where kb and kc are the full rotating natural frequencies of the respective modes. These
frequencies differ from the frequencies vb and vc , as will be described shortly. The term
s2 is the internal detuning parameter.

The external excitation frequency is applied for the case of primary resonance of the
out-of-plane mode and is expanded as

(V/v)2 = k2
c + es11 + e2s12, (18)

where s11 and s12 are external detuning parameters.
Equations (11)–(18) are substituted into the discretized equations of motion (8)–(10),

and terms with like powers of e are collected as the quasi-static, O(e0); linear, O(e1); first
non-linear, O(e2); and second non-linear, O(e3); order equations below;

Order e0:

A3 +v2
a a0 =0. (19)

Order e1:

k2
c D2

0 a1 +v2
a a1 =0, k2

c D2
0 b1 + (v2

b + a0 B3)b1 =0, (20, 21)

k2
c D2

0 g1 + (v2
c + a0 C2)g1 =0. (22)

Order e2:

k2
c D2

0 a2 +v2
a a2 =−A4 b2

1 −A5 g2
1 − s11 D2

0 a1 −2k2
c D0 D1 a1 − ma1 D0 a1 − na1 D0 b1, (23)

k2
c D2

0 b2 + (v2
b + a0 B3)b2 =−a1 b1 b3 − s11 D2

0 b1 −2k2
c D0 D1 b1

− mb1 D0 b1 − nb1 D0 a1, (24)

k2
c D2

0 g2 + (v2
c + a0 C2)g2 =−a1 C2 g1 − s11 D2

0 g1 −2k2
c D0 D1 g1 − mc1 D0 g1 +F1 cos (T0).

(25)

Order e3:

k2
c D2

0 a3 +v2
a a3 =−2A4 b1 b2 −A5 g1 g2 −2k2

c D0 D1 a2 − k2
c D2

1 a1 −2k2
c D0 D2 a1

−ma1 D0 a2−ma1 D1 a1 − ma2 D0 a1 − na1 D0 b2 − na1 D1 b1 − na2 D0 b1

−s11 D2
0 a2−2s11 D0 D1 a1 − s11 D2

1 a0 − s12 D2
0 a1, (26)

k2
c D2

0 b3 + (v2
b + a0 B3)b3 =−B3 a2 b1 −B3 a1 b2 −B5 b3

1 −B4 b1 g2
1 −2k2

c D0 D1 b2

−k2
c D2

1 b1 −2k2
c D0 D2 b1 − mb1 D0 b2 − mb1 D1 b1 − mb2 D0 b1 − nb1 D0 a2

−nb1 D1 a1 − nb2 D0 a1 − s11 D2
0 b2 −2s11 D0 D1 b1 − s12 D2

0 b1, (27)

k2
c D2

0 g3 + (v2
c + a0 C2)g3 =−C2 a2 g1 −C3 b2

1 g1 −C4 g3
1 −C2 a1 g2 − k2

c D2
1 g1 −2k2

c D0 D2 g1

−2k2
c D0 D1 g2 − mc1 D1 g1 − mc1 D0 g2 − mc2 D0 g1 −2s11 D0 D1 g1

−s11 D2
0 g2 − s12 D2

0 g1 +F2 cos (T0). (28)
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Consider the quasi-static O(e0) equation (19). The solution for a0 is −A3 /v2
a . Notice that

A3 is the Galerkin coefficient associated with the term −mv2(x+R). Hence, a0 accounts
for the axial stretching produced by the centrifugal stiffening which arises from the
(constant) rotation speed of the rigid body.

Next, consider the three O(e1) equations. On the basis of the coefficients of the linear
stiffness terms, the following definitions are made:

k2
a =v2

a , k2
b =v2

b + a0 B3, k2
c =v2

c + a0 C2. (29–31)

The terms, ki , i= a, b, c are referred to as the full rotating natural frequencies in their
respective directions because they include an additional quantity arising from the increased
stiffness due to axial stretching; i.e., a0. Using the definitions

ha = ka /kc , hb = kb /kc ,

the solution to equations (20)–(22) are

a1 =Ca (T1, T2) eiha T0 + c.c., b1 =Cb (T1, T2) eihb T0 + c.c., (32, 33)

g1 =Cc (T1, T2) eiT0 + c.c., (34)

where c.c. indicates the complex conjugate of the preceding terms. The coefficients of these
solutions are slowly varying (complex) amplitudes that will be determined from the O(e2)
and O(e3) equations.

Solutions for a2, b2 and g2 are determined at O(e2) where the lower order solutions
(a0, a1, b1 and g1) act as excitation terms. By substituting equations (32–34) into equations
(23–25), terms proportional to eihaT0, eihbT0 and eiT0 in the a, b and g equations, respectively,
appear as non-homogeneous terms. These terms are secular and become unbounded as
t:a. Elimination of the secular terms leads to the following three state equations:

−2iha k2
c D1 Ca + s11 h2

a Ca −ima1 ha Ca =0, (35)

−2ihb k2
c D1 Cb + s11 h2

b Cb −imb1 hb Cb =0, (36)

−2ik2
c D1 Cc + s11 Ca −imc1 Ca + 1

2 F1 =0. (37)

Non-secular terms remain and extending the perturbation solution to the next order
requires the particular solutions for a2, b2 and g2. These solutions are presented in
Appendix A.

Following a similar procedure on O(e3), leads to the following state equations:

−2iha k2
c D2 Ca − ma2 iha Ca + na ha G6 nb Ca + s21 h2

a Ca

−2A4 (G8 Ca C�b Cb +G7 Ca Cb C�b )−2A5 (G10 Ca C�c Cc +G9 Ca Cc C�c )=0, (38)

−2ihb k2
c D2 Cb − mb2 ihb Cb + na nb hb G1 Cb + s12 h2

b Cb

−B3 (G4 C2
b C�b +G5 Cc C�c Cb +G2 C2

b C�b +G3 C2
c C�b ei(2(s21/kc)T1)

−B3 Cb Ca C�a (G8 +G7)−3B5 C2
b C�b −B4 (2Cc C�c Cb +C�b C2

c e−i(2s21/kc)T1)=0, (39)

−2ik2
c D2 Cc −imc2 Cc + s12 Cc

−C2 (G4 Cb C�b Cc +G5 C2
c C�c +G2 C2

b C�c ei(2s21/kc)T1 +G3 C2
c C�c )

−C2 Cc Ca C�a (G9 +G10)−C3 (2Cb C�b Cc +C2
b C�c ei(2s21/kc)T1)−3C4 C2

c C�c + 1
2 F2 =0,

(40)

where the overbar denotes a complex conjugate. It should be pointed out that equations
(39) and (40) have small divisor terms proportional to ei(2− hb)T0 and ei(2hb −1)T0, respectively.
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These become secular due to the 1:1 internal resonance, equation (17). Furthermore, since
the O(e2) secular terms describe modulations on the T2 time scale only, they should be
treated as independent of the T1 time scale [16].

The complex response amplitudes (Ca , Cb , Cc ) may be described in terms of the response
amplitudes on the slower time scales: namely,

C� k = eD1 Ck + e2D2 Ck , k= a, b, c, (41)

where the overdot denotes a derivative with respect to the original time scale, t. The above
three equations describe modulations of the complex displacement amplitudes on the
original time scale. The terms D1 Ck and D2 Ck are obtained from the secular equations at
order O(e2) (equations (35)–(37)) and at order O(e3) (equations (38)–(40)), respectively.

Approximate, steady state periodic solutions of (8)–(10) can be obtained from the
singular points of an autonomous form of equation (41). Algebraic equations defining
these points can be found by introducing the polar forms

Ca = 1
2 Ma (T1, T2) eifa(T1,T2), Cb = 1

2 Mb (T1, T2) eifb(T1,T2), (42, 43)

Cc = 1
2 Mc (T1, T2) eifc(T1,T2) (44)

into equation (41), separating the real and imaginary parts, and setting all time derivatives
on the original time scale to zero. This yields a set of six non-linear, algebraic state
equations which can be solved numerically for Ma , Mb , Mc , fa , fb and fc using a
multi-dimensional root finding algorithm. The state equations are shown below:

((V/v)2 − k2
c )h2

a Ma +A1 B1 (V/v)2ha G6 Ma − 1
2 A4 M2

b Ma (G7 +G8)

− 1
2 A5 Ma M2

c (G9 +G10)=0, (45)

2za va (V/v)ha Ma =0, (46)

2kc hb Mb (kb − kc )= ((V/v)2 − k2
c )h2

b Mb +A1 B1 (V/v)2hb G1 Mb − 1
4 B3 M3

b (G2 +G4)

−3
4 B5 M3

b − 1
4 B3 G5 Mb M2

c − 1
4 B3 G3 Mb M2

c cos (u)− 1
2 B4 M2

c Mb

−1
4 B3 M2

a Mb (G7 +G8)− 1
4 B4 Mb M2

c cos (u), (47)

−2zb vb (V/v)hb Mb + 1
4 B3 G3 Mb M2

c sin (u)+ 1
4 B4 Mb M2

c sin (u)=0, (48)

((V/v)2 − k2
c )Mc +F cos (fc )− 1

4 C2 G4 Mc M2
b − 1

4 C2 M3
c (G3 +G5)

− 1
4 C2 G2 M2

b Mc cos (u)− 1
4 C2 M2

a (G9 +G10)

− 1
2 C3 M2

b Mc − 1
4 C3 M2

b Mc cos (u)− 3
4 C4 M3

c =0, (49)

−2zc vc (V/v)Mc −F sin (fc )− 1
4 C2 G2 M2

b Mc sin (u)− 1
4 C3 M3

b Mc sin (u)=0, (50)

where u is defined as u=2fb −2fc +(2s21 /kc )T1.
Note that, from equation (46), Ma =0 for non-trivial system parameters and excitation.

Furthermore, fa is arbitrary, since it does not appear in any of the state equations.
Therefore, there is no dynamic component to the axial deformation; i.e., axial modes do
not participate in the 1:1 internally resonant response of the lateral modes.

5. STABILITY OF PERIODIC SOLUTIONS

The fixed points of the state equations (equations (45)–(50)) correspond to periodic
responses. The stability of these responses can be ascertained by applying small
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perturbations to the periodic solutions and considering the local growth or decay of the
perturbation. Consider

Ca =C*a + dCa , Cb =C*b + dCb , Cc =C*c + dCc , (51)

where C*i and dCi (i= a, b, c) are the periodic solutions and their respective small
perturbations. These expressions are then substituted into the state equations which are
then linearized. Three variational equations result. Using equations (42)–(44) and the
definitions

dCa =(pr +ipi ) eifa elT0, dCb =(qr +iqi ) eiFb elT0, dCc =(rr +iri ) eifc elT0, (52)

the three variational equations may be separated into real and imaginary parts yielding
six equations governing stability.

As Ma =0, the lateral stability equations uncouple from the axial equation allowing the
axial stability to be determined independently. The real part of the axial motion
eigenvalues is Re (l1,2)=−2za va (V/v)ha /(2k2

c ha ), indicating asymptotic stability. The
stability of the lateral oscillations (both in-plane and out-of-plane) are determined from
the remaining 4×4 eigenvalue problem

[S]x= lx, (53)

where x= {qr , qi , rr , ri}t and the elements of the matrix [S] are given in Appendix B.

6. RESULTS

6.1.   1:1  

It is first necessary to identify beam configurations in which the natural frequencies of
the in-plane and out-of-plane modes are equal. Here, for simplicity, the beam
cross-sections are taken to be rectangular (A= a× b). Note that it is straightforward to
extend the results to an arbitrary cross-section. For a stationary beam, the natural
frequencies of the in-plane and out-of-plane modes are equal when the cross-section is
square (a= b). This is not the case, however, when the beam is rotating. For non-zero
rotation speeds, the natural frequencies of the out-of-plane modes are higher than those
of the corresponding in-plane modes [13]. Since the influence of the centrifugal stiffness
in each lateral direction is different, the beam cross-section must be rectangular in order
for the natural frequencies to be equal. Specific combinations of cross-section (moment
of inertia) and rotation speed for which this occurs can be calculated numerically from
the linearized equations of motion (8)–(10) or approximated using the perturbation
solution presented herein.

Equating the full rotating natural frequencies (30)–(31), kc = kb , leads to

C2 a0 +v2
c =B3 a0 +v2

b . (54)

As an example, the eigenfunctions of a non-rotating beam are chosen. The Galerkin
coefficients C2 and B3 have the same form arising from −k(U,x V,x ),x and −k(U,x W,x ),x .
These terms cancel, leaving v2

c =v2
b or

EIy

mv2L4 w,xxxx =−v+
EIz

mv2L4 v,xxxx . (55)

If the first mode is considered, equation (55) becomes

EIy

mv2L4 (1·875)4C=−F+
EIz

mv2L4 (1·875)4F, (56)
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where Iy = ba3/12, Iz = ab3/12 and m= rab. Rearranging, equation (56) gives

rv2L2

E
=

(1·875)4

12 $0b
L1

2

−0a
L1

2

%. (57)

Shown in Figure 2 are the non-dimensional rotation speeds (rv2L2/E) for which the first
in-plane and first out-of-plane modes of a beam with a rectangular cross-section will have
(rotating) natural frequencies in a 1:1 ratio as computed using equation (57). A family of
curves is shown for non-dimensional cross-section dimensions a/L and b/L=0·03, 0·04
and 0·05. When the rotation speed vanishes, the natural frequencies have 1:1 ratios only
when a= b. In the limit as a/L:0 for a fixed b/L, the model reduces to that of a rotating
string in the out-of-plane direction.

It is important to note that the class of beams in which the height (a) is less than the
base (b) of the cross-section (i.e., Iy Q Iz ) has a rotation speed at which the natural
frequencies will be equal. This is in contrast to the stationary beam, which only has a 1:1
natural frequency ratio when the cross-section is a square (a= b). Note that Figure 2 is
based upon a stationary beam mode. At high rotation speeds, a more accurate
approximation can be obtained by using the rotating beam modes in equation (54).

6.2.   

To illustrate characteristic behavior of this system, the following example is presented.
The system parameters were chosen to match those of an experiment discussed in reference
[13]. The beam is made of Lexan with density r=74·913 slugs/ft3; Young’s modulus,
E=4·968×107 psi; length, L=20·0 in and cross-sectional area dimensions,
a=0·8 in×b=1·0 in. The radius of the rigid body is R=3·0 in and its rotation speed
is v=84·3 rad/s (805 rpm). The modal damping ratios are taken to be za = zb = zc =0·01.
From equations (30)–(31), the effective natural frequencies in the in-plane and out-of-plane
directions are kb =1·9827494 and kc =1·9822064, respectively, making es2 =5·43×10−4.
In the figures to follow, solid (dashed) curves indicate stable (unstable) periodic responses
obtained from the perturbation analysis. The circles indicate results obtained by
numerically integrating the equations of motion (8)–(10).

Figure 2. The curves indicate combinations of beam cross-sections (a/L× b/L) and non-dimensional rotation
rates squared (rv2L2/E), which cause the in-plane and out-of-plane natural frequencies to be in a 1:1 ratio.
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Shown in Figure 3 is the out-of-plane response amplitude Mc as a function of excitation
frequency for an excitation amplitude of F=2·5 lbf. This clearly displays the typical
hysteresis region in the amplitude response diagram associated with non-linear
deformations as discussed both theoretically and experimentally in references [14, 15] for
the stationary beam. This response is a softening type and displays a saddle node
bifurcations at V/v=1·8899 (point A) and at V/v=1·9159 (point B). At this low
excitation level, only the out-of-plane (directly excited) mode responds.

Shown in Figures 4(a)–4(c) are the response amplitudes Mc (out-of-plane) and Mb

(in-plane) as a function of excitation frequency for F=4·0 lbf. Consider the motion as the
frequency is decreased from V/v=2·1. Initially, only the one-degree-of-freedom response,
Mc , exists. At V/v=1·9352 (point A), the system undergoes a supercritical pitchfork
bifurcation and a stable 1:1 internally resonant response is initiated while the
one-degree-of-freedom response becomes unstable. As the excitation frequency continues
to decrease, the magnitude of the in-plane motion grows and then levels off. At
V/v=1·8523 (point B), the system experiences a Hopf bifurcation and the 1:1 solution
branch becomes unstable. Following the 1:1 response branch, it then exchanges stability
at another Hopf bifurcation at V/v=1·7129 (point C). As the in-plane motion continues
to decrease, the system experiences a third Hopf bifurcation at V/v=1·6791 (point D);
see Figure 4(b). The unstable 1:1 response then vanishes at a sub-critical pitchfork
bifurcation at V/v=1·6771 (point E). The upper branch of the one-degree-of-freedom
response is unstable until a Hopf bifurcation occurs at V/v=1·6732 (point F). The upper
branch exchanges stability at a saddle node point at V/v=1·6649 (point G).

Now consider the response for increasing frequency beginning at V/v=1·6. Only the
one degree-of-freedom response exists. As the frequency increases, the directly excited
modal amplitude Mc increases until a saddle node bifurcation occurs at V/v=1·8853
(point H). The system then ‘‘jumps up’’ to the stable 1:1 response branch. Shortly,
thereafter, a pitchfork bifurcation is encountered at V/v=1·9352 (point A) and the
one-degree-of-freedom motion is reestablished. Note, that in the frequency range,
1·6649QV/vQ 1·6732 (between points G and F) two stable one-degree-of-freedom
responses coexist. A one-degree-of-freedom and a 1 : 1 internally resonant response coexist

Figure 3. The out-of-plane modal amplitude (Mc , Mb =0), versus the excitation frequency normalized with
respect to the rotation speed (V/v). The excitation amplitude is F=2·5 lbf. Due to the low forcing amplitude,
there is insufficient energy to initiate a 1:1 internally resonant response.
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Figure 4. (a) The out-of-plane modal amplitude Mc versus the excitation frequency normalized with respect
to the rotation speed (V/v): the excitation amplitude is F=4·0 lbf. (b) This is an exploded view of Figure 4(a)
in the region from C to G. (c) This is the in-plane motion corresponding to Figure 4(a): the excitation amplitude
is F=4·0 lbf.

in the frequency ranges 1·6791QV/vQ 1·7129 (between points D and C) and
1·8523QV/vQ 1·8853 (between points B and H).

Shown in Figures 5(a) and 5(b) are the modal response amplitudes Mb and Mc at a higher
excitation level of F=6·0 lbf. As the frequency is decreased from V/v=2·1, the motion
consists of a one-degree-of-freedom response in Mc (Mb =0). At V/v=1·9365 (point A),
a supercritical pitchfork bifurcation occurs which initiates a stable 1:1 internally resonant
response and the one-degree-of-freedom response loses stability. The 1:1 response
exchanges stability at a saddle node bifurcation at V/v=1·7723 (point B). The
unstable 1:1 branch can then be traced into a Hopf bifurcation at V/v=1·8098 (point C)
where stability is again exchanged but only briefly as the response exchanges stability at
a saddle node bifurcation at V/v=1·8132 (point D). The 1:1 response branch then
remains unstable.

Beginning at the low frequency end, V/v=1·6, only the one-degree-of-freedom
response is stable. As the frequency is increased, the out-of-plane response amplitude
increases until a saddle node bifurcation is encountered at V/v=1·8509 (point E).
The response then ‘‘jumps up’’ to the stable 1:1 response branch. This branch
remains stable until V/v=1·9365 where the one-degree-of-freedom response is
restabilized through the pitchfork bifurcation (point A). In the frequency range
1·8098QV/vQ 1·8132 (between points C and D), two 1:1 internally resonant responses
and a one-degree-of-freedom response coexist.
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It should be emphasized that the response described by Mb (in-plane motion) and Mc

(out-of-plane motion) corresponds to steady state motions about a quasi-static deflection
in the axial direction which arises from the (constant) centrifugal force field.

6.3.     

In the previous section, it was shown that the 1:1 internally resonant response will be
initiated at a supercritical pitchfork bifurcation. The location of these bifurcation points
depends on the system parameters and can be located in the system parameter space by
considering the state equations governing the stability of the periodic solutions.

The eigenvalues of equation (53) are zero at a pitchfork bifurcation point. By setting
the determinate of [S] equal to zero, the points at which the 1:1 response solutions bifurcate
from the one-degree-of-freedom responses may be obtained. This is done for various
rotation speeds and aspect ratios in the (F, V/v) parameter plane.

The loci of bifurcation points for three different rotation speeds are shown in Figure 6.
For now, consider only the case v=805 rpm. Below F=2·9 lbf, there are no bifurcation
points. This indicates that below this forcing level there is insufficient energy in the
out-of-plane motion to trigger the in-plane motion. As the excitation level is gradually
increased to F1 4·75 lbf, bifurcations begin to occur at higher frequencies. As the

Figure 5. (a) The out-of-plane modal amplitude Mc versus the excitation frequency normalized with respect
to the rotation speed (V/v): the excitation amplitude is F=6·0 lbf. (b) This is the in-plane motion corresponding
to Figure 5(a): the excitation amplitude is F=6·0 lbf.



1.95

10

0
1.89

F

1

8

6

4

2

1.90 1.91 1.941.92
Ω /ω

1.93

9

7

5

3

1.98

10

0
1.86

F

1

8

6

4

2

1.88 1.90 1.961.92
Ω /ω

1.94

9

7

5

3

   191

Figure 6. The parameter family corresponding to the onset of the pitchfork bifurcation initiating the 1:1
response for a fixed aspect ratio. In this case, a/L=0·04 and b/L=0·05. — · —, v=798 rpm; —, v=805 rpm;
----, v=812 rpm.

excitation level is increased still further the curve bends to the left and the bifurcation
frequency decreases. This ‘‘bending back’’ phenomenon which is encountered as F is
increased would not be detectable if the perturbation scheme were limited to first
non-linear order.

Similar trends are shown for two other rotation speeds, v=798 rpm and v=812 rpm.
However, the absolute value of the bifurcation frequency is shifted to the left
(v=798 rpm) and to the right (v=812 rpm) relative to the v=805 rpm case. This
indicates that at higher rotation speeds, more energy (greater excitation) is needed to
initiate multi-degree-of-freedom responses.

Depicted in Figure 7 are the loci of pitchfork bifurcation points for three beams of
different heights with a fixed width b/L=0·05 and rotation speed v=805 rpm. First,
consider the a/L=0·04 curve. Again, below F=2·9 lbf there are no bifurcation points

Figure 7. The parameter family corresponding to the onset of the pitchfork bifurcation initiating the 1:1
response for a fixed rotation rate. Here b/L=0·05 and v=850 rpm. — · —, a/L=0·03875; —, a/L=0·04;
----, a/L=0·04125.
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because of insufficient energy to excite the in-plane mode. Above this level of F, the point
of bifurcation (V/v)b initially increases with F. As the excitation level continues to increase
past F=5 lbf, the bifurcation frequencies begin to decrease. As observed in Figure 6, this
‘‘bending back’’ phenomenon is detectable only through a second order analysis.

Two other beam heights are shown in Figure 7: a/L=0·03875 and a/L=0·04125. The
taller beam shifts the loci to the left, while the shorter beam shifts the loci to the right.

7. CONCLUSIONS

A three-dimensional non-linear continuum model that captures the effects of centrifugal
stiffening, axial stretching and gyroscopic coupling is derived for a flexible, Euler–Bernoulli
beam attached to a rigid body rotating at constant speed. Using a corresponding
three-degree-of-freedom discrete model, modal coupling between lateral in-plane and
out-of-plane motion is examined using a second order perturbation analysis. The
occurrence of the one-to-one internally resonant response is shown to depend upon both
the beam cross-section and the rate of rotation. This occurs for rectangular cross-sections,
in which bq a, because centrifugal stiffening produces unequal changes in the in-plane
frequencies as the beam rotates. This is in contrast with the stationary beam which may
only experience a 1:1 response if the cross-section is square.

Typical response characteristics are presented which show the transition from a purely
out-of-plane response (single degree of freedom) to a coupled in-plane/out-of-plane
internally resonant response. Furthermore, it is shown that the 1:1 response is initiated
by either a supercritical pitchfork bifurcation ( for decreasing V/v) or a saddle node
bifurcation ( for increasing V/v).

Finally, the pitchfork bifurcation and its dependence on the excitation level and
frequency are examined. Specifically, the parameter combinations which initiate this route
to the coupled 1:1 response are determined in the excitation level F versus excitation
frequency V/v parameter space. The point of bifurcation is shown to vary considerably,
particularly at low excitation levels.
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APPENDIX A: PARTICULAR SOLUTIONS

The particular solutions at O(e2) are

a2 = ina1 G1 Cb eihbT0 − ina1 G1 C�b e−ihbT0 +G2 C2
b ei2hbT0 +G2 C�2

b e−i2hbT0 +G3 C2
c ei2T0

+G3 C�2
c e−i2T0 + (G4 Cb C�b +G5 Cc C�c ),

b2 = inb1 G6 Ca eihaT0 + inb1 G6 C�a e−ihaT0 +G7 Ca Cb ei(ha + hb)T0 +G8 Ca C�b ei(ha − hb)T0

+G8 C�a Cb e−i(ha − hb)T0 +G7 C�a C�b e−i(ha + hb)T0,

g2 =G9 Ca Cc ei(ha +1)T0 +G10 Ca C�c ei(ha −1)T0 +G10 C�a Cc e−i(ha −1)T0 +G9 C�a C�c e−i(ha +1)T0,

where

G1 =
−1

h2
a − h2

b

hb

k2
c
, G6 =

−1
h2

b − h2
a

ha

k2
c
,

G2 =
−1

h2
a −4h2

b

A4

k2
c
, G7 =

−1
−(ha + hb )2 + h2

b

B3

k2
c
,

G3 =
−1

h2
a −4

A5

k2
c
, G8 =

−1
−(ha − hb )2 + h2

b

B3

k2
c
,

G4 =
−2
h2

a

A4

k2
c
, G9 =

−1
1−(ha +1)2

C2

k2
c
,

G5 =
−2
h2

a

A5

k2
c
, G10 =

−1
1−(ha −1)2

C2

k2
c
.
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APPENDIX B: ELEMENTS OF MATRIX [S]

The elements of the matrix [S], which dictates the stability of lateral oscillations, are
given by

S11 =
−(2zb vb(V/v))hb + 1

4 B3 G3 M2
c sin (u)+ 1

4 B4 M2
c sin (u)

2k2
c hb

,

S12 =

[(V/v)2 − k2
c ]h2

b +A1 B1(V/v)2hb G1 −B3 (G4 +G2)
×M2

b /4−B3 M2
c [G5 −G3 cos (u)]/4−3B5 M2

b /4−B4 M2
c [2−cos (u)]/4

2k2
c hb

,

S13 =
B3 G3 Mb Mc sin (u)+B4 Mb Mc sin (u)

4k2
c hb

,

S14 =
B3 G3 Mb Mc cos (u)+B4 Mb Mc cos (u)

4k2
c hb

,

S21 =

[(V/v)2 − k2
c ]h2

b +A1 B1 (V/v)2hb G1 −3B3 (G4 +G2)M2
b/4−B3 M2

c

×[G5 +G3 cos (u)]/4−9B5 M2
b /4−B4 M2

c [2−cos (u)]/4
−2k2

c hb
,

S22 =
(2zb vb (V/v))hb + 1

4 B3 G3 M2
c sin (u)+ 1

4 B4 M2
c sin (u)

−2k2
c hb

,

S23 =
−B3 Mb Mc (2G5 +G3 cos (u))−B4 Mb Mc (2+cos (u))

−4k2
c hb

,

S24 =
−B3 G3 Mb Mc sin (u)−B4 Mb Mc sin (u)

4k2
c hb

,

S31 =
−C2 G2 Mb Mc sin (u) (C2 +C3)

4k2
c

,

S32 =
−C2 G2 Mb Mc cos (u) (C2 +C3)

4k2
c

,

S33 =
−(2zc vc (V/v))−M2

b (C2 G2 sin (u)/4+C3 sin (u))/4
2k2

c
,

S34 =

[(V/v)2 − k2
c ]−C2 (G5 +G3)M2

c /4−C2 M2
b

×[G4 −G2 cos (u)]/4−3C4 M2
c /4−C3 M2

b [2−cos (u)]/4
2k2

c
,

S41 =
−Mb Mc (C2 G4 +2C3)+Mb Mc (G2 C2 +C3) cos (u)

−4k2
c

,

S42 =
Mb Mc sin (u) (C2 G2 +C3)

−4k2
c

,

S43 =

[(V/v)2 − k2
c ]−3C2 (G5 +G3)M2

c /4−C2 M2
b [G4 +G2 cos (u)]/4−9C4 M2

c /4
−C3 M2

b [2+cos (u)]/4
−2k2

c
,

S44 =
−(2zc vc (V/v))−M2

b sin (u) (C2 G2 +C3)/4
−2k2

c
.


